Antiepileptic Drug levels: use & abuse

William Whitehouse
School of Medicine
Advice on AED levels…

• Confused
• Oversimplified
• Overly negative

• AED levels can be useful
• BUT…
• Use with care
AED levels

• Basic principals of clinical pharmacology
• Historical perspective
• Clinical value of AED levels
• Indications for AED levels
• Misunderstandings about AED levels
Clinical Pharmacology

• Dose response curve
• Transient nature of drug-receptor interactions
• Pharmacodynamics
• Pharmacokinetics
• Individual biological variation
Dose Response Curve

- Pick a response or effect to measure
- Pick doses from a range
 - Sub-therapeutic to Supra-maximal
- In an individual
 - Patch of cell membrane
 - Cell
 - Tissue sample
 - Organism / person
 - Sample of population
Dose Response Curve

• The desired effect(s)
• The unwanted effect(s)

• The dose
 – Administered
 – Circulating
 – At the receptor
Drug – Receptor interactions
Midazolam

- Anaesthetic
- Antiepileptic
- Hypnotic
- Anxiolytic
- Sedative

- Toxic “poisonous”
- Ineffective “weak”
- Efficacious “powerful”
Midazolam

- Anxiolytic
- Sedative
- Antiepileptic
- Hypnotic
- Anaesthetic
- Ineffective “weak”
- Efficacious “powerful”
- Toxic “poisonous”
a) Dose response curve

max
y
50%
sub
1 2 x 3
b) Log dose response curve

- max
- 50%
- sub

\[y \]

\[\log x \]

1 2 3
But what about time?
c) Time concentration graph

- \(iv \) max
- \(iv \) 50%

- \(oral \) max
- \(oral \) 50%

- Time of 1 \(iv \) max
 - 2 \(iv \) 50% max
 - 3 oral max
 - 4 oral 50% max
What is pharmacokinetics?
What is pharmacokinetics?

- Route of administration
- Absorption
- Bioavailability
- Distribution
- Metabolism
- Excretion
- Elimination
Dose intervals

• PK properties
• T1/2 linear or 1st order kinetics
• mg/hr zero order kinetics
• Intermediate Michaelis-Menten kinetics
• Individual biological variation
• Disease states
• Drug interactions
d) Time concentration graph

- steady state
- 1st oral max
- 1st oral 50%

1 2 3 4
Puffer fish
May-July 1968:
51 patients on phenytoin presented with 2-4 weeks:
Ataxia, diplopia, vomiting:
The phenytoin story

May-July 1968:
51 patients on phenytoin presented with 2-4 weeks:
Ataxia, diplopia, vomiting:
Phenytoin toxicity but 45/51 had *no* change in dose.

Had high serum levels (87% were above 10-20 mg/L).
All on 100 mg capsules from same manufacturer.
All capsules contained 100 mg +/- 2 mg.
Old capsules likewise....

May-July 1968:
51 patients on phenytoin presented with 2-4 weeks:
Ataxia, diplopia, vomiting:
Phenytoin toxicity but 45/51 had *no* change in dose.

Had high serum levels (87% were above 10-10 mg/L).
All on 100 mg capsules from same manufacturer.
All capsule contained 100 mg +/- 2 mg.
Old capsules likewise....

November 1967 change in excipient:
increased bioavailability
Blood phenytoin concentrations in a patient taking phenytoin (400 mg./day), with excipients respectively as shown (lactose, calcium sulphate, lactose). Vertical columns represent daily faecal excretion of phenytoin when measured.
The phenytoin story

- Bioavailability
- Anticipating toxicity & dose adjustment
- Target Range vs Therapeutic Range
- Width of Therapeutic Index
Drug manufacturing

Regulations are tight:

• Amount must be consistent mg/tablet

• Bioavailability must be consistent:
 – Between batches
 – Between manufacturers

 1. AUC
 2. C_{max}
 3. T_{max}

Single or multidose studies in 12 or more healthy adult volunteers: 90%CI: 80-125%
c) Time concentration graph

- iv max
- iv 50%
- Oral max
- Oral 50%
- AUC
- C_{max}
- Time of iv max
 - 2 iv 50% max
 - 3 oral max
 - 4 oral 50% max
tetrodotoxin
AED dose adjustment

• Treatment goal

• Risks of toxicity

• Seizure frequency

• Constructing a narrative
When to measure AEDs
<table>
<thead>
<tr>
<th>Drug</th>
<th>mg/l</th>
<th>µmol/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbamazepine</td>
<td>4-12</td>
<td>16-50</td>
</tr>
<tr>
<td>Ethosuximide</td>
<td>40-100</td>
<td>300-750</td>
</tr>
<tr>
<td>Lacosamide</td>
<td>10-20</td>
<td></td>
</tr>
<tr>
<td>Lamotrigine</td>
<td>1.5-20*</td>
<td></td>
</tr>
<tr>
<td>Levetiracetam</td>
<td>6-40</td>
<td></td>
</tr>
<tr>
<td>Phebobarbitone</td>
<td>10-50</td>
<td>45-225</td>
</tr>
<tr>
<td>Phenytoin</td>
<td>10-25</td>
<td>40-100</td>
</tr>
<tr>
<td>Topiramate</td>
<td>5-20</td>
<td></td>
</tr>
<tr>
<td>Valproate</td>
<td>40-100</td>
<td>270-700</td>
</tr>
</tbody>
</table>
When to measure AEDs

- ICU; PICU; NICU
- ED
- OPD
Sodium channel α sub-unit
Conclusions

• AED levels can be very useful
• But not often needed as a routine (PHT)
• Not often needed at steady state *per se*
• Not often needed strictly timed

• Compliance / Adherence / Concordance /
• Communication / Partnership